Few things (broke everything related to sleep)

This commit is contained in:
Nacho 2025-08-30 16:21:24 +02:00
parent e138334e06
commit f1c1035c74
21 changed files with 529 additions and 62 deletions

1
.gitignore vendored
View File

@ -12,3 +12,4 @@ __pycache__/
venv/
sprites/
eggs/
linecreator/lines

392
User_Setup.h Normal file
View File

@ -0,0 +1,392 @@
// USER DEFINED SETTINGS
// Set driver type, fonts to be loaded, pins used and SPI control method etc.
//
// See the User_Setup_Select.h file if you wish to be able to define multiple
// setups and then easily select which setup file is used by the compiler.
//
// If this file is edited correctly then all the library example sketches should
// run without the need to make any more changes for a particular hardware setup!
// Note that some sketches are designed for a particular TFT pixel width/height
// User defined information reported by "Read_User_Setup" test & diagnostics example
#define USER_SETUP_INFO "User_Setup"
// Define to disable all #warnings in library (can be put in User_Setup_Select.h)
//#define DISABLE_ALL_LIBRARY_WARNINGS
// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################
// Define STM32 to invoke optimised processor support (only for STM32)
//#define STM32
// Defining the STM32 board allows the library to optimise the performance
// for UNO compatible "MCUfriend" style shields
//#define NUCLEO_64_TFT
//#define NUCLEO_144_TFT
// STM32 8-bit parallel only:
// If STN32 Port A or B pins 0-7 are used for 8-bit parallel data bus bits 0-7
// then this will improve rendering performance by a factor of ~8x
//#define STM_PORTA_DATA_BUS
//#define STM_PORTB_DATA_BUS
// Tell the library to use parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
//#defined TFT_PARALLEL_16_BIT // **** 16-bit parallel ONLY for RP2040 processor ****
// Display type - only define if RPi display
//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI
// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER // Generic driver for common displays
//#define ILI9341_2_DRIVER // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
//#define ST7735_DRIVER // Define additional parameters below for this display
//#define ILI9163_DRIVER // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
#define ST7789_DRIVER // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER
//#define ST7796_DRIVER
//#define SSD1351_DRIVER
//#define SSD1963_480_DRIVER
//#define SSD1963_800_DRIVER
//#define SSD1963_800ALT_DRIVER
//#define ILI9225_DRIVER
//#define GC9A01_DRIVER
// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:
// #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only
// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display
//#define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue
#define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red
// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below
// #define M5STACK
// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
// #define TFT_WIDTH 80
//#define TFT_WIDTH 128
// #define TFT_WIDTH 172 // ST7789 172 x 320
// #define TFT_WIDTH 170 // ST7789 170 x 320
#define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320
///#define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
#define TFT_HEIGHT 240 // ST7789 240 x 240
// #define TFT_HEIGHT 320 // ST7789 240 x 320
// #define TFT_HEIGHT 240 // GC9A01 240 x 240
// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or stray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:
// #define ST7735_INITB
// #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128 // For 128 x 128 display
// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_ROBOTLCD // For some RobotLCD Arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT)
//#define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset
// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.
// #define TFT_INVERSION_ON
// #define TFT_INVERSION_OFF
// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################
// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);
#define TFT_BL 25 // LED back-light control pin
#define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW)
// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED to NodeMCU pin VIN (or 5V, see below)
// Display SCK to NodeMCU pin D5
// Display SDI/MOSI to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET to NodeMCU pin D4 (or RST, see below)
// Display CS to NodeMCU pin D8 (or GND, see below)
// Display GND to NodeMCU pin GND (0V)
// Display VCC to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labelled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######
// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
//#define TFT_MISO PIN_D6 // Automatically assigned with ESP8266 if not defined
#define TFT_MOSI 23 // Automatically assigned with ESP8266 if not defined
#define TFT_SCLK 18 // Automatically assigned with ESP8266 if not defined
#define TFT_CS 15 // Chip select control pin D8
#define TFT_DC 17 // Data Command control pin
#define TFT_RST 19 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
//#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin)
#define TOUCH_CS -1 // Chip select pin (T_CS) of touch screen
//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only
// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ######
// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions. It is best not to connect MISO as some displays
// do not tristate that line when chip select is high!
// Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller
// cannot be connected as well to the same SPI signals.
// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// On NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK
// In ESP8266 overlap mode the following must be defined
//#define TFT_SPI_OVERLAP
// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS PIN_D3
//#define TFT_DC PIN_D5 // Data Command control pin
//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ######
// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 15 // Chip select control pin
//#define TFT_DC 2 // Data Command control pin
//#define TFT_RST 4 // Reset pin (could connect to RST pin)
//#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST
// For ESP32 Dev board (only tested with GC9A01 display)
// The hardware SPI can be mapped to any pins
//#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on.
//#define TFT_SCLK 14
//#define TFT_CS 5 // Chip select control pin
//#define TFT_DC 27 // Data Command control pin
//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL 22 // LED back-light
//#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen
//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only
// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 14 // Chip select control pin
//#define TFT_DC 27 // Data Command control pin
//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL 32 // LED back-light (required for M5Stack)
// ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ######
// The library supports 8-bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!
// Parallel bus is only supported for the STM32 and ESP32
// Example below is for ESP32 Parallel interface with UNO displays
// Tell the library to use 8-bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS 33 // Chip select control pin (library pulls permanently low
//#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST 32 // Reset pin, toggles on startup
//#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD 2 // Read strobe control pin
//#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus
//#define TFT_D1 13 // so a single register write sets/clears all bits.
//#define TFT_D2 26 // Pins can be randomly assigned, this does not affect
//#define TFT_D3 25 // TFT screen update performance.
//#define TFT_D4 17
//#define TFT_D5 16
//#define TFT_D6 27
//#define TFT_D7 14
// ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ######
// The TFT can be connected to SPI port 1 or 2
//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
//#define TFT_MOSI PA7
//#define TFT_MISO PA6
//#define TFT_SCLK PA5
//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
//#define TFT_MOSI PB15
//#define TFT_MISO PB14
//#define TFT_SCLK PB13
// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
//#define TFT_CS D5 // Chip select control pin to TFT CS
//#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
//#define TFT_RST D7 // Reset pin to TFT RST (or RESET)
// OR alternatively, we can use STM32 port reference names PXnn
//#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5
//#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6
//#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to processor reset
// Use an Arduino pin for initial testing as connecting to processor reset
// may not work (pulse too short at power up?)
// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################
// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!
#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts
// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT
// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################
// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface.
//#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface
// For RP2040 processor and 8 or 16-bit parallel displays:
// The parallel interface write cycle period is derived from a division of the CPU clock
// speed so scales with the processor clock. This means that the divider ratio may need
// to be increased when overclocking. It may also need to be adjusted dependant on the
// display controller type (ILI94341, HX8357C etc.). If RP2040_PIO_CLK_DIV is not defined
// the library will set default values which may not suit your display.
// The display controller data sheet will specify the minimum write cycle period. The
// controllers often work reliably for shorter periods, however if the period is too short
// the display may not initialise or graphics will become corrupted.
// PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV))
//#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock
// For the RP2040 processor define the SPI port channel used (default 0 if undefined)
//#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used
// For the STM32 processor define the SPI port channel used (default 1 if undefined)
//#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2
// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.
// #define SPI_FREQUENCY 1000000
// #define SPI_FREQUENCY 5000000
// #define SPI_FREQUENCY 10000000
// #define SPI_FREQUENCY 20000000
// #define SPI_FREQUENCY 27000000
#define SPI_FREQUENCY 40000000
// #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
// #define SPI_FREQUENCY 80000000
// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY 20000000
// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY 2500000
// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT
// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!
// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.
// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect
// #define SUPPORT_TRANSACTIONS
#define USE_DMA_TO_TFT

View File

@ -51,7 +51,7 @@ const int sleepyAnimationFrames[] = {
};
const int happyAnimationFrames[] = {
3, 7
7, 3
};
const int hatchingAnimationPositions[] = {
@ -64,6 +64,7 @@ void animate_performEatingAnimation(TFT_eSprite &spr, struct SpriteData* spriteD
void animate_performRefuseAnimation(TFT_eSprite &spr, struct SpriteData* spriteData);
void animate_performSleepyAnimation(TFT_eSprite &spr, struct SpriteData* spriteData);
void animate_performHappyAnimation(TFT_eSprite &spr, struct SpriteData* spriteData);
void animate_performAngryAnimation(TFT_eSprite &spr, struct SpriteData* spriteData);
void animate_performHatchingAnimation(TFT_eSprite &spr, struct SpriteData* spriteData);
#endif

View File

@ -88,6 +88,20 @@ void animate_performHappyAnimation(TFT_eSprite &spr, struct SpriteData* spriteDa
);
}
void animate_performAngryAnimation(TFT_eSprite &spr, struct SpriteData* spriteData) {
currentAnimationFrame = (currentAnimationFrame + 1) % numFramesAngry;
draw_drawSprite(
spr,
spriteHeightOnScreen,
spriteHeightOnScreen,
spriteData,
angryAnimationFrames[currentAnimationFrame],
6,
false
);
}
void animate_performHatchingAnimation(TFT_eSprite &spr, struct SpriteData* spriteData) {
currentAnimationFrame = (currentAnimationFrame + 1) % numFramesHappy;
draw_drawSprite(

View File

@ -39,18 +39,6 @@ uint8_t buttons_getPressedButtons() {
(k4_prev == HIGH && k4_current == LOW)
);
if (retV == K4_PRESSED) {
tft.fillScreen(TFT_BLACK);
xPos++;
if (xPos > 1) {
yPos++;
xPos = 0;
if (yPos > 1) {
yPos = 0;
}
}
}
if (retV != 0) {
tone(SPK_PIN, BEEP_FREQ_HZ, BEEP_LEN_MS);
lastPressedButtonTime = esp_timer_get_time();

View File

@ -17,10 +17,10 @@
#define BL_PIN 25
// BUTTONS PINOUT
#define K1_PIN 27
#define K2_PIN 26
#define K1_PIN 35
#define K2_PIN 13
#define K3_PIN 33
#define K4_PIN 32
#define K4_PIN 14
// SPEAKER PINOUT
#define SPK_PIN 21
@ -101,7 +101,8 @@
#define CARE_MISTAKE_SCREEN 23
#define POOPING_SCREEN 24
#define HAPPY_SCREEN 25
#define MAIN_SCREEN 26
#define ANGRY_SCREEN 26
#define MAIN_SCREEN 27
// TRAINING MODES
#define TRAINING_SCREEN_1 30

View File

@ -12,7 +12,7 @@ static const int BUF_H = 120;
void tft_initDisplay(TFT_eSPI &tft, uint16_t color) {
tft.begin();
tft.initDMA();
tft.setRotation(1);
tft.setRotation(0);
tft.fillScreen(TFT_RED);
}
@ -32,8 +32,8 @@ void tft_initScreenBuffer(uint16_t color) {
void tft_drawBuffer() {
tft.startWrite();
composite1.pushSprite(xPos * -80, yPos * -112);
composite2.pushSprite(xPos * -80, (yPos * -112) + BUF_H);
composite1.pushSprite(0, 0);
composite2.pushSprite(0, 0 + BUF_H);
tft.endWrite();
}

View File

@ -11,13 +11,15 @@
void energy_setUpLightSleep() {
// Plena confianza en manolo
esp_sleep_enable_ext0_wakeup(GPIO_NUM_32, 0);
esp_sleep_enable_ext0_wakeup((gpio_num_t) K4_PIN, LOW);
esp_sleep_enable_timer_wakeup(SLEEP_TIME_US);
}
void energy_startLightSleep() {
esp_light_sleep_start();
printf("[MAIN] Woken up\n");
// Who woke you up???? TELL me!!
auto cause = esp_sleep_get_wakeup_cause();

View File

@ -72,8 +72,8 @@ void setup() {
Serial.begin(115200);
delay(100); // Give MPU6050 and ESP32 time to power up
Wire.begin(MPU_SDA_PIN, MPU_SCL_PIN); // I2C init before MPU6050
mpu.initialize();
//Wire.begin(MPU_SDA_PIN, MPU_SCL_PIN); // I2C init before MPU6050
//mpu.initialize();
tft_initDisplay(tft, TFT_BLACK);
tft_initScreenBuffer(TFT_BLACK);
@ -172,6 +172,10 @@ void loop() {
menu_drawHappyScreen(bg, sprite, &mainCharacterSprites, &uiElementsData);
break;
case ANGRY_SCREEN:
menu_drawAngryScreen(bg, sprite, &mainCharacterSprites, &uiElementsData);
break;
case EGG_HATCH_SCREEN:
menu_eggHatchScreen(bg, sprite, &menuElementsData, &uiElementsData);
break;
@ -207,7 +211,6 @@ void loop() {
}
void loop2() {
if (!pauseLoop) {
buttons_checkInactivity();
vpet_runVpetTasks();
@ -215,12 +218,6 @@ void loop2() {
dayUnixTime = mktime(&timeInfo) % SECONDS_IN_DAY;
if (screenOff) { energy_startLightSleep(); }
} else {
buttons_getPressedButtons(); // REMOVE: Esto es porque tengo que shiftear el buffer de la pantalla
delay(100);
}
loopPaused = pauseLoop;
}
void secondCoreTask(void*) {

46
src/menu/angry_screen.cpp Normal file
View File

@ -0,0 +1,46 @@
#include "menu.h"
#include "defs/defs.h"
#include "defs/sprite_data.h"
#include "display/display.h"
#include "draw/draw.h"
#include "animations/animations.h"
void menu_drawAngryScreen(
TFT_eSprite &bg, TFT_eSprite &sprite,
struct SpriteData* spriteData, struct SpriteData* smallUiElements
) {
uint8_t frameCounter = 0;
while (true) {
uint64_t currentTime = esp_timer_get_time();
if (currentTime - lastUpdateTime > ANIMATION_THRESHOLD_TIME_US) {
if (frameCounter > 3) {
screenKey = MAIN_SCREEN; // TODO: Change for while battling
menuKey = STATUS_SCREEN;
vTaskResume(secondLoop);
return;
}
draw_drawBackground(bg, 90, 90, 3);
tft_clearBuffer(sprite, TFT_TRANSPARENT);
animate_performAngryAnimation(sprite, spriteData);
if (frameCounter % 2 == 0) {
tone(SPK_PIN, 1000, 100);
tone(SPK_PIN, 1000, 200);
tft_clearBuffer(sprite, TFT_TRANSPARENT);
draw_drawSprite(sprite, 18, 72, smallUiElements, FIREWORKS_ICON, 6);
draw_drawSprite(sprite, 174, 72, smallUiElements, FIREWORKS_ICON, 6);
}
frameCounter++;
lastUpdateTime = currentTime;
}
tft_drawBuffer();
}
}

View File

@ -150,7 +150,7 @@ void menu_evolutionScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteDat
menu_freeCheckerboard();
loop_resumeLoop();
vTaskResume(secondLoop);
screenKey = MAIN_SCREEN;

View File

@ -9,7 +9,7 @@
void menu_changeCharaScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteData* mainSpriteData, struct SpriteData* uiSpriteData) {
loop_pauseLoop();
vTaskSuspend(secondLoop);
uint8_t selectedChara = currentCharacter;
CharacterData* selectedCharaData = &charaData[selectedChara];
@ -30,7 +30,7 @@ void menu_changeCharaScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteD
case K2_PRESSED:
currentCharacter = selectedChara;
loop_resumeLoop();
vTaskResume(secondLoop);
screenKey = MAIN_SCREEN;
menuKey = STATUS_SCREEN;
@ -42,7 +42,7 @@ void menu_changeCharaScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteD
sprintf(fileName, "/chara/%02x.bin", charaData[currentCharacter].idChara);
storage_readFile(fileName, mainSpriteData);
loop_resumeLoop();
vTaskResume(secondLoop);
screenKey = MAIN_SCREEN;
menuKey = STATUS_SCREEN;
@ -64,6 +64,7 @@ void menu_changeCharaScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteD
storage_readFile(fileName, mainSpriteData);
draw_drawSprite(sprite, 18, 72, mainSpriteData, 0, 6);
} else {
tft_drawCenteredText("EMPTY", 4, 120);
}
@ -81,7 +82,7 @@ void menu_changeCharaScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteD
sprintf(fileName, "/chara/%02x.bin", charaData[currentCharacter].idChara);
storage_readFile(fileName, mainSpriteData);
loop_resumeLoop();
vTaskResume(secondLoop);
screenKey = MAIN_SCREEN;
menuKey = STATUS_SCREEN;

View File

@ -50,8 +50,6 @@ void menu_drawClockEdit(TFT_eSprite &bg) {
case K3_PRESSED:
// Es un dia random, nada significativo, ya pondre mas adelante que tenga dia del año
rtc.setTime(0, clockMinuteCount, clockHourCount, 1, 11, 2024);
getLocalTime(&timeInfo, 50);
dayUnixTime = mktime(&timeInfo) % SECONDS_IN_DAY;
coldBoot = false;

View File

@ -18,6 +18,8 @@ void menu_drawHappyScreen(
screenKey = MAIN_SCREEN; // TODO: Change for while battling
menuKey = STATUS_SCREEN;
vTaskResume(secondLoop);
return;
}

View File

@ -47,6 +47,10 @@ void menu_drawDeathScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteDat
void menu_evolutionScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteData* mainCharacterSprites);
void menu_mainScreen();
void menu_changeCharaScreen(TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteData* mainSpriteData, struct SpriteData* uiSpriteData);
void menu_drawAngryScreen(
TFT_eSprite &bg, TFT_eSprite &sprite,
struct SpriteData* spriteData, struct SpriteData* smallUiElements
);
void menu_sleepScreen_sleepAction();
void menu_sleepScreen_recalculateSleep();

View File

@ -3,16 +3,39 @@
#include "display/display.h"
#include "defs/defs.h"
#include "defs/chara_data.h"
#include "animations/animations.h"
#include "defs/sprite_data.h"
void menu_clearPoopScreen(
TFT_eSprite &bg, TFT_eSprite &sprite, struct SpriteData* spriteData, struct SpriteData* bigUiElements, struct SpriteData* smallUiElements
) {
printf("[AAAAAAA] pausing loop...\n");
vTaskSuspend(secondLoop);
printf("[AAAAAAA] loop paused...\n");
int cleanerXPos = 174;
menu_drawIdleScreen(bg, sprite, spriteData, bigUiElements, smallUiElements);
lastUpdateTime = 0;
printf("[AAAAAAA] drawing idle screen...\n");
draw_drawBackground(bg, 90, 90, 3);
uint8_t offsetX = menu_poopOverlay(bg, sprite, smallUiElements);
printf("[AAAAAAA] drawing animation...\n");
animate_performAnimation(sprite, spriteData, offsetX);
printf("[AAAAAAA] drawing overlay...\n");
menu_uiOverlay(sprite, bigUiElements);
printf("[AAAAAAA] idle screen down...\n");
tft_clearBuffer(sprite, TFT_TRANSPARENT);
while (cleanerXPos > 18) {
draw_drawSprite(sprite, cleanerXPos, 72, smallUiElements, CLEANER_ICON, 6);
draw_drawSprite(sprite, cleanerXPos, 120, smallUiElements, CLEANER_ICON, 6);

View File

@ -11,6 +11,7 @@ void training_screenTraining1(
TFT_eSprite &bg, TFT_eSprite &sprite,
struct SpriteData* mainCharaData, struct SpriteData* attackSprites
) {
vTaskSuspend(secondLoop);
draw_drawBackground(bg, 90, 90, 3);
draw_drawSpriteCentered(sprite, mainCharaData, 11, 6);
@ -74,9 +75,5 @@ void training_screenTraining1(
attackResult = ATTACK_PATTERN_MEDIOCRE;
}
loop_pauseLoop();
training_displayTrainingResult(bg, sprite, mainCharaData, attackSprites, attackResult);
loop_resumeLoop();
}

View File

@ -5,10 +5,8 @@
#include "defs/screen_defs.h"
void menu_uiOverlay(TFT_eSprite &charSprite, struct SpriteData* uiElements) {
struct tm timeInfo;
char hourBuffer[6];
getLocalTime(&timeInfo, RTC_TIMEOUT_THRESHOLD_TIME_MS);
snprintf(hourBuffer, 6, "%02d:%02d", timeInfo.tm_hour, timeInfo.tm_min);
composite1.fillRect(0, 0, 240, 24, TFT_BLACK);

View File

@ -59,7 +59,7 @@ void training_displayTrainingResult(
case ATTACK_PATTERN_BAD:
pattern = patternBad;
screenKey = MAIN_SCREEN;
screenKey = ANGRY_SCREEN;
charaData[currentCharacter].weight--;
if (charaData[currentCharacter].weight < charaData[currentCharacter].minWeight) {
@ -71,14 +71,14 @@ void training_displayTrainingResult(
case ATTACK_PATTERN_MEDIOCRE:
default:
pattern = patternMediocre;
screenKey = MAIN_SCREEN;
screenKey = ANGRY_SCREEN;
break;
}
for (int i = 0; i < NUM_ROUNDS; i++) {
training_trainingAttackSounds();
for (int j = 78; j >= -48; j -= 6) {
for (int j = 78; j >= -48; j -= 3) {
draw_drawBackground(bg, 90, 90, 3);
draw_drawSprite(sprite, 126, 72, mainCharaData, 11, 6);
draw_drawAttacks(sprite, attackSprites, j, 72, pattern[i], charaData[currentCharacter].spriteAttackId, 6);
@ -86,7 +86,7 @@ void training_displayTrainingResult(
tft_drawBuffer();
}
delay(100);
delay(20);
}

View File

@ -160,10 +160,6 @@ void vpet_reduceTimers(uint8_t diff_sec) {
if (charaData[currentCharacter].strengthCareMistakeTimer > 0) {
charaData[currentCharacter].strengthCareMistakeTimer -= diff_sec;
}
if (charaData[currentCharacter].changeTimerLeft > 0) {
charaData[currentCharacter].changeTimerLeft -= diff_sec;
}
}
void vpet_evalHungerTimer() {
@ -228,13 +224,17 @@ void vpet_evalStrengthTimer() {
}
}
void vpet_evalChangeTimer() {
void vpet_evalChangeTimer(uint8_t diff_sec) {
if (charaData[currentCharacter].changeTimerLeft > 0) {
charaData[currentCharacter].changeTimerLeft -= diff_sec;
}
if (charaData[currentCharacter].changeTimerLeft <= 0) {
if (change_onChangeTimerComplete()) {
screenKey = TIMER_FINISHED_SCREEN;
interruptKey = EVOLUTION_SCREEN;
pauseLoop = true;
vTaskSuspend(secondLoop);
}
}
}
@ -259,7 +259,7 @@ void vpet_runVpetTasks() {
vpet_evalTimers();
}
vpet_evalChangeTimer();
vpet_evalChangeTimer(diffSec);
} else if (!charaData[currentCharacter].hatched && charaData[currentCharacter].hatching) {
charaData[currentCharacter].hatchTimer += diffSec;
@ -272,6 +272,7 @@ void vpet_runVpetTasks() {
}
vpet_debugTimers(diffSec);
debug_printFreeMemory();
runVpetTasks = false;
vpetLastEvaluationTime = currentEvaluationTime;

View File

@ -14,6 +14,7 @@ void vpet_debugTimers(uint8_t diffSec);
void vpet_runVpetTasks();
void vpet_reduceTimers(uint8_t diff_sec);
void vpet_evalHungerTimer();
void vpet_evalChangeTimer(uint8_t diff_sec);
void vpet_evalStrengthTimer();
#endif